Copied to
clipboard

G = C2×C625C4order 288 = 25·32

Direct product of C2 and C625C4

direct product, metabelian, supersoluble, monomial

Aliases: C2×C625C4, C62.136D4, C62.263C23, (C2×C62)⋊9C4, C6224(C2×C4), C24.2(C3⋊S3), (C23×C6).12S3, (C22×C6)⋊6Dic3, C62(C6.D4), C233(C3⋊Dic3), (C22×C6).161D6, (C22×C62).3C2, C6.39(C22×Dic3), (C2×C62).113C22, C22.25(C327D4), (C3×C6)⋊8(C22⋊C4), (C2×C6)⋊11(C2×Dic3), (C3×C6).296(C2×D4), C33(C2×C6.D4), C6.137(C2×C3⋊D4), C23.30(C2×C3⋊S3), C3214(C2×C22⋊C4), C223(C2×C3⋊Dic3), C2.4(C2×C327D4), C2.9(C22×C3⋊Dic3), (C2×C6).104(C3⋊D4), (C3×C6).127(C22×C4), (C2×C6).280(C22×S3), (C2×C3⋊Dic3)⋊19C22, (C22×C3⋊Dic3)⋊11C2, C22.27(C22×C3⋊S3), SmallGroup(288,809)

Series: Derived Chief Lower central Upper central

C1C3×C6 — C2×C625C4
C1C3C32C3×C6C62C2×C3⋊Dic3C22×C3⋊Dic3 — C2×C625C4
C32C3×C6 — C2×C625C4
C1C23C24

Generators and relations for C2×C625C4
 G = < a,b,c,d | a2=b6=c6=d4=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1c3, dcd-1=c-1 >

Subgroups: 996 in 396 conjugacy classes, 173 normal (11 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C6, C6, C2×C4, C23, C23, C23, C32, Dic3, C2×C6, C2×C6, C22⋊C4, C22×C4, C24, C3×C6, C3×C6, C3×C6, C2×Dic3, C22×C6, C22×C6, C2×C22⋊C4, C3⋊Dic3, C62, C62, C62, C6.D4, C22×Dic3, C23×C6, C2×C3⋊Dic3, C2×C3⋊Dic3, C2×C62, C2×C62, C2×C62, C2×C6.D4, C625C4, C22×C3⋊Dic3, C22×C62, C2×C625C4
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, Dic3, D6, C22⋊C4, C22×C4, C2×D4, C3⋊S3, C2×Dic3, C3⋊D4, C22×S3, C2×C22⋊C4, C3⋊Dic3, C2×C3⋊S3, C6.D4, C22×Dic3, C2×C3⋊D4, C2×C3⋊Dic3, C327D4, C22×C3⋊S3, C2×C6.D4, C625C4, C22×C3⋊Dic3, C2×C327D4, C2×C625C4

Smallest permutation representation of C2×C625C4
On 144 points
Generators in S144
(1 59)(2 60)(3 55)(4 56)(5 57)(6 58)(7 10)(8 11)(9 12)(13 49)(14 50)(15 51)(16 52)(17 53)(18 54)(19 114)(20 109)(21 110)(22 111)(23 112)(24 113)(25 62)(26 63)(27 64)(28 65)(29 66)(30 61)(31 72)(32 67)(33 68)(34 69)(35 70)(36 71)(37 40)(38 41)(39 42)(43 46)(44 47)(45 48)(73 76)(74 77)(75 78)(79 86)(80 87)(81 88)(82 89)(83 90)(84 85)(91 94)(92 95)(93 96)(97 100)(98 101)(99 102)(103 106)(104 107)(105 108)(115 118)(116 119)(117 120)(121 124)(122 125)(123 126)(127 130)(128 131)(129 132)(133 136)(134 137)(135 138)(139 142)(140 143)(141 144)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)(97 98 99 100 101 102)(103 104 105 106 107 108)(109 110 111 112 113 114)(115 116 117 118 119 120)(121 122 123 124 125 126)(127 128 129 130 131 132)(133 134 135 136 137 138)(139 140 141 142 143 144)
(1 65 35 56 25 67)(2 66 36 57 26 68)(3 61 31 58 27 69)(4 62 32 59 28 70)(5 63 33 60 29 71)(6 64 34 55 30 72)(7 47 105 121 42 77)(8 48 106 122 37 78)(9 43 107 123 38 73)(10 44 108 124 39 74)(11 45 103 125 40 75)(12 46 104 126 41 76)(13 110 83 52 24 87)(14 111 84 53 19 88)(15 112 79 54 20 89)(16 113 80 49 21 90)(17 114 81 50 22 85)(18 109 82 51 23 86)(91 137 129 98 141 118)(92 138 130 99 142 119)(93 133 131 100 143 120)(94 134 132 101 144 115)(95 135 127 102 139 116)(96 136 128 97 140 117)
(1 10 51 93)(2 123 52 99)(3 8 53 91)(4 121 54 97)(5 12 49 95)(6 125 50 101)(7 15 96 59)(9 13 92 57)(11 17 94 55)(14 98 58 122)(16 102 60 126)(18 100 56 124)(19 118 61 78)(20 128 62 105)(21 116 63 76)(22 132 64 103)(23 120 65 74)(24 130 66 107)(25 108 109 131)(26 73 110 119)(27 106 111 129)(28 77 112 117)(29 104 113 127)(30 75 114 115)(31 37 88 141)(32 47 89 136)(33 41 90 139)(34 45 85 134)(35 39 86 143)(36 43 87 138)(38 83 142 68)(40 81 144 72)(42 79 140 70)(44 82 133 67)(46 80 135 71)(48 84 137 69)

G:=sub<Sym(144)| (1,59)(2,60)(3,55)(4,56)(5,57)(6,58)(7,10)(8,11)(9,12)(13,49)(14,50)(15,51)(16,52)(17,53)(18,54)(19,114)(20,109)(21,110)(22,111)(23,112)(24,113)(25,62)(26,63)(27,64)(28,65)(29,66)(30,61)(31,72)(32,67)(33,68)(34,69)(35,70)(36,71)(37,40)(38,41)(39,42)(43,46)(44,47)(45,48)(73,76)(74,77)(75,78)(79,86)(80,87)(81,88)(82,89)(83,90)(84,85)(91,94)(92,95)(93,96)(97,100)(98,101)(99,102)(103,106)(104,107)(105,108)(115,118)(116,119)(117,120)(121,124)(122,125)(123,126)(127,130)(128,131)(129,132)(133,136)(134,137)(135,138)(139,142)(140,143)(141,144), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,65,35,56,25,67)(2,66,36,57,26,68)(3,61,31,58,27,69)(4,62,32,59,28,70)(5,63,33,60,29,71)(6,64,34,55,30,72)(7,47,105,121,42,77)(8,48,106,122,37,78)(9,43,107,123,38,73)(10,44,108,124,39,74)(11,45,103,125,40,75)(12,46,104,126,41,76)(13,110,83,52,24,87)(14,111,84,53,19,88)(15,112,79,54,20,89)(16,113,80,49,21,90)(17,114,81,50,22,85)(18,109,82,51,23,86)(91,137,129,98,141,118)(92,138,130,99,142,119)(93,133,131,100,143,120)(94,134,132,101,144,115)(95,135,127,102,139,116)(96,136,128,97,140,117), (1,10,51,93)(2,123,52,99)(3,8,53,91)(4,121,54,97)(5,12,49,95)(6,125,50,101)(7,15,96,59)(9,13,92,57)(11,17,94,55)(14,98,58,122)(16,102,60,126)(18,100,56,124)(19,118,61,78)(20,128,62,105)(21,116,63,76)(22,132,64,103)(23,120,65,74)(24,130,66,107)(25,108,109,131)(26,73,110,119)(27,106,111,129)(28,77,112,117)(29,104,113,127)(30,75,114,115)(31,37,88,141)(32,47,89,136)(33,41,90,139)(34,45,85,134)(35,39,86,143)(36,43,87,138)(38,83,142,68)(40,81,144,72)(42,79,140,70)(44,82,133,67)(46,80,135,71)(48,84,137,69)>;

G:=Group( (1,59)(2,60)(3,55)(4,56)(5,57)(6,58)(7,10)(8,11)(9,12)(13,49)(14,50)(15,51)(16,52)(17,53)(18,54)(19,114)(20,109)(21,110)(22,111)(23,112)(24,113)(25,62)(26,63)(27,64)(28,65)(29,66)(30,61)(31,72)(32,67)(33,68)(34,69)(35,70)(36,71)(37,40)(38,41)(39,42)(43,46)(44,47)(45,48)(73,76)(74,77)(75,78)(79,86)(80,87)(81,88)(82,89)(83,90)(84,85)(91,94)(92,95)(93,96)(97,100)(98,101)(99,102)(103,106)(104,107)(105,108)(115,118)(116,119)(117,120)(121,124)(122,125)(123,126)(127,130)(128,131)(129,132)(133,136)(134,137)(135,138)(139,142)(140,143)(141,144), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,65,35,56,25,67)(2,66,36,57,26,68)(3,61,31,58,27,69)(4,62,32,59,28,70)(5,63,33,60,29,71)(6,64,34,55,30,72)(7,47,105,121,42,77)(8,48,106,122,37,78)(9,43,107,123,38,73)(10,44,108,124,39,74)(11,45,103,125,40,75)(12,46,104,126,41,76)(13,110,83,52,24,87)(14,111,84,53,19,88)(15,112,79,54,20,89)(16,113,80,49,21,90)(17,114,81,50,22,85)(18,109,82,51,23,86)(91,137,129,98,141,118)(92,138,130,99,142,119)(93,133,131,100,143,120)(94,134,132,101,144,115)(95,135,127,102,139,116)(96,136,128,97,140,117), (1,10,51,93)(2,123,52,99)(3,8,53,91)(4,121,54,97)(5,12,49,95)(6,125,50,101)(7,15,96,59)(9,13,92,57)(11,17,94,55)(14,98,58,122)(16,102,60,126)(18,100,56,124)(19,118,61,78)(20,128,62,105)(21,116,63,76)(22,132,64,103)(23,120,65,74)(24,130,66,107)(25,108,109,131)(26,73,110,119)(27,106,111,129)(28,77,112,117)(29,104,113,127)(30,75,114,115)(31,37,88,141)(32,47,89,136)(33,41,90,139)(34,45,85,134)(35,39,86,143)(36,43,87,138)(38,83,142,68)(40,81,144,72)(42,79,140,70)(44,82,133,67)(46,80,135,71)(48,84,137,69) );

G=PermutationGroup([[(1,59),(2,60),(3,55),(4,56),(5,57),(6,58),(7,10),(8,11),(9,12),(13,49),(14,50),(15,51),(16,52),(17,53),(18,54),(19,114),(20,109),(21,110),(22,111),(23,112),(24,113),(25,62),(26,63),(27,64),(28,65),(29,66),(30,61),(31,72),(32,67),(33,68),(34,69),(35,70),(36,71),(37,40),(38,41),(39,42),(43,46),(44,47),(45,48),(73,76),(74,77),(75,78),(79,86),(80,87),(81,88),(82,89),(83,90),(84,85),(91,94),(92,95),(93,96),(97,100),(98,101),(99,102),(103,106),(104,107),(105,108),(115,118),(116,119),(117,120),(121,124),(122,125),(123,126),(127,130),(128,131),(129,132),(133,136),(134,137),(135,138),(139,142),(140,143),(141,144)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96),(97,98,99,100,101,102),(103,104,105,106,107,108),(109,110,111,112,113,114),(115,116,117,118,119,120),(121,122,123,124,125,126),(127,128,129,130,131,132),(133,134,135,136,137,138),(139,140,141,142,143,144)], [(1,65,35,56,25,67),(2,66,36,57,26,68),(3,61,31,58,27,69),(4,62,32,59,28,70),(5,63,33,60,29,71),(6,64,34,55,30,72),(7,47,105,121,42,77),(8,48,106,122,37,78),(9,43,107,123,38,73),(10,44,108,124,39,74),(11,45,103,125,40,75),(12,46,104,126,41,76),(13,110,83,52,24,87),(14,111,84,53,19,88),(15,112,79,54,20,89),(16,113,80,49,21,90),(17,114,81,50,22,85),(18,109,82,51,23,86),(91,137,129,98,141,118),(92,138,130,99,142,119),(93,133,131,100,143,120),(94,134,132,101,144,115),(95,135,127,102,139,116),(96,136,128,97,140,117)], [(1,10,51,93),(2,123,52,99),(3,8,53,91),(4,121,54,97),(5,12,49,95),(6,125,50,101),(7,15,96,59),(9,13,92,57),(11,17,94,55),(14,98,58,122),(16,102,60,126),(18,100,56,124),(19,118,61,78),(20,128,62,105),(21,116,63,76),(22,132,64,103),(23,120,65,74),(24,130,66,107),(25,108,109,131),(26,73,110,119),(27,106,111,129),(28,77,112,117),(29,104,113,127),(30,75,114,115),(31,37,88,141),(32,47,89,136),(33,41,90,139),(34,45,85,134),(35,39,86,143),(36,43,87,138),(38,83,142,68),(40,81,144,72),(42,79,140,70),(44,82,133,67),(46,80,135,71),(48,84,137,69)]])

84 conjugacy classes

class 1 2A···2G2H2I2J2K3A3B3C3D4A···4H6A···6BH
order12···2222233334···46···6
size11···12222222218···182···2

84 irreducible representations

dim1111122222
type++++++-+
imageC1C2C2C2C4S3D4Dic3D6C3⋊D4
kernelC2×C625C4C625C4C22×C3⋊Dic3C22×C62C2×C62C23×C6C62C22×C6C22×C6C2×C6
# reps1421844161232

Matrix representation of C2×C625C4 in GL7(𝔽13)

12000000
01200000
00120000
0001000
0000100
0000010
0000001
,
1000000
0100000
012120000
0004000
0000300
0000098
0000003
,
1000000
01200000
00120000
00010000
0000400
0000010
0000001
,
12000000
012110000
0010000
0000100
00012000
000001111
0000082

G:=sub<GL(7,GF(13))| [12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,9,0,0,0,0,0,0,8,3],[1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,11,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,1,0,0,0,0,0,0,0,0,11,8,0,0,0,0,0,11,2] >;

C2×C625C4 in GAP, Magma, Sage, TeX

C_2\times C_6^2\rtimes_5C_4
% in TeX

G:=Group("C2xC6^2:5C4");
// GroupNames label

G:=SmallGroup(288,809);
// by ID

G=gap.SmallGroup(288,809);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,56,422,2693,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^6=c^6=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1*c^3,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽